Cyclized Oligopeptide Targeting LRP5/6-DKK1 Interaction Reduces the Growth of Tumor Burden in a Multiple Myeloma Mouse Model
نویسندگان
چکیده
PURPOSE Dickkopf 1 (DKK1) has been extensively investigated in mouse models of multiple myeloma, which results in osteolytic bone lesions. Elevated DKK1 levels in bone marrow plasma and serum inhibit the differentiation of osteoblast precursors. Present pharmaceutical approaches to target bone lesions are limited to antiresorptive agents. In this study, we developed a cyclized oligopeptide against DKK1-low density lipoprotein receptor-related protein (LRP) 5/6 interaction and tested the effects of the oligopeptide on tumor burden. MATERIALS AND METHODS A cyclized oligopeptide based on DKK1-LRP5/6 interactions was synthesized chemically, and its nuclear magnetic resonance structure was assessed. Luciferase reporter assay and mRNA expressions of osteoblast markers were evaluated after oligopeptide treatment. MOPC315.BM.Luc cells were injected into the tail vein of mice, after which cyclized oligopeptide was delivered subcutaneously 6 days a week for 4 weeks. RESULTS The cyclized oligopeptide containing NXI motif bound to the E1 domain of LRP5/6 effectively on surface plasmon resonance analysis. It abrogated the Wnt-β-catenin signaling inhibited by DKK1, but not by sclerostin, dose dependently. RT-PCR and alkaline phosphatase staining showed increased expressions of osteoblast markers according to the treatment concentrations. Bioluminescence images showed that the treatment of cyclized oligopeptide reduced tumor burden more in oligopeptide treated group than in the vehicle group. CONCLUSION The cyclized oligopeptide reported here may be another option for the treatment of tumor burden in multiple myeloma.
منابع مشابه
Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo.
Dickkopf-1 (DKK1), a soluble inhibitor of Wnt signaling secreted by multiple myeloma (MM) cells contributes to osteolytic bone disease by inhibiting the differentiation of osteoblasts. In this study, we tested the effect of anti-DKK1 therapy on bone metabolism and tumor growth in a SCID-rab system. SCID-rab mice were engrafted with primary MM cells expressing varying levels of DKK1 from 11 pati...
متن کاملDKK1 as a novel target for myeloma immunotherapy
Novel, potent tumor-associated antigens are needed to improve the efficacy of immunotherapy for myeloma. We demonstrated that active vaccination using the DKK1-DNA vaccine in the myeloma mouse model protected mice from developing myeloma and effectively treated established myeloma. Therefore, DKK1 could be developed as a novel vaccine for myeloma immunotherapy.
متن کاملActive vaccination with Dickkopf-1 induces protective and therapeutic antitumor immunity in murine multiple myeloma.
Dickkopf-1 (DKK1), broadly expressed in myeloma cells but highly restricted in normal tissues, together with its functional roles as an osteoblast formation inhibitor, may be an ideal target for immunotherapy in myeloma. Our previous studies have shown that DKK1 (peptide)-specific CTLs can effectively lyse primary myeloma cells in vitro. The goal of this study was to examine whether DKK1 can be...
متن کاملNatural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.
BACKGROUND Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. DESIGN AND METHODS The cytotoxicity of...
متن کاملThe role of Dickkopf-1 in bone development, homeostasis, and disease.
Wnt/beta-catenin signaling is central to bone development and homeostasis in adulthood and its deregulation is associated with bone pathologies. Dickkopf-1 (DKK1), a soluble inhibitor of Wnt/beta-catenin signaling required for embryonic head development, regulates Wnt signaling by binding to the Wnt coreceptor lipoprotein-related protein-5 (LRP5)/Arrow. LRP5 mutations causing high bone mass syn...
متن کامل